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SEMIDEFINITE PROGRAMMING* 

LIEVEN VAN DEN BERG HE^ AND STEPHEN BOYD~ 

Abstract. In semidefinite programming, one minimizes a linear function subject to the constraint that an affine 
combination of symmetric matrices is positive semidefinite. Such a constraint is nonlinear and nonsmooth, but convex, 
so semidefinite programs are convex optimization problems. Semidefinite programming unifies several standard 
problems (e.g., linear and quadratic programming) and finds many applications in engineering and combinatorial 
optimization. 

Although semidefinite programs are much more general than linear programs, they are not much harder to solve. 
Most interior-point methods for linear programming have been generalized to semidefinite programs. As in linear 
programming, these methods have polynomial worst-case complexity and perform very well in practice. 

This paper gives a survey of the theory and applications of semidefinite programs and an introduction to primal- 
dual interior-point methods for their solution. 

Key words. semidefinite programming, convex optimization, interior-point methods, eigenvalue optimization, 
combinatorial optimization, system and control theory 

AMS subject classifications. 65K05,49M45,93B51,90C25,90C27,90C90, 15A18 

1. Introduction. 

1.1. Semidefinite programming. We consider the problem of minimizing a linear func- 
tion of a variable x E Rmsubject to a matrix inequality: 

minimize c T x  

subject to F ( x )  3 0, 

where 

The problem data are the vector c E Rmand m + 1 symmetric matrices Fo, . . . ,F,,, E RnXn. 
The inequality sign in F ( x )  2 0 means that F ( x ) is positive semidefinite, i.e., zT F ( X ) Z  3 0 
for all z E Rn. 

We call the inequality F ( x )  2 0 a linear matrix inequality and the problem ( 1 )a semidef-
inite program. A semidefinite program is a convex optimization problem since its objective 
and constraint are convex: if F ( x )  2 0 and F ( y )  2 0, then, for all A, 0 5 h 5 1, 

F(hx  + ( 1  - h y ) )  = h F ( x ) + (1  - h ) F ( y )  2 0. 

Figure 1depicts a simple example with x E R~ and Fi E Our goal here is to give 
the reader a generic picture that shows some of the features of semidefinite programs, so the 
specific values of the data are not relevant. The boundary of the feasible region is shown as 
the dark curve. The feasible region, i.e., { x 1 F ( x )  2 O), consists of this boundary curve along 
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FIG. 1 .  A simple semidefinite program with x E R2,F(x) E R ~ ~ ~ .  

with the region it encloses. Very roughly speaking, the semidefinite programming problem is 
to move as far as possible in the direction -c, while staying in the feasible region. For this 
semidefinite program there is one optimal point, xopt. 

This simple example demonstrates several general features of semidefinite programs. We 
have already mentioned that the feasible set is convex. Note that the optimal solution xopt 
is on the boundary of the feasible set, i.e., F(xopt) is singular; in the general case there is 
always an optimal point on the boundary (provided the problem is feasible). In this example, 
the boundary of the feasible set is not smooth. It is piecewise smooth: it consists of two 
line segments and two smooth curved segments. In the general case the boundary consists of 
piecewise algebraic surfaces. Skipping some technicalities, the idea is as follows. At a point 
where the boundary is smooth, it is defined locally by some specific minors of the matrix F(x) 
vanishing. Thus the boundary is locally the zero set of some polynomials in xl , . . . ,x,, i.e., 
an algebraic surface. 

Although the semidefinite program (1) may appear quite specialized, we will see that it 
includes many important optimization problems as special cases. For instance, consider the 
linear program (LP) 

minimize cTx 

subject to Ax +b 2 0, 

in which the inequality denotes componentwise inequality.' Since a vector v 2 0 (compo-
nentwise) if and only if the matrix diag(v) (i.e., the diagonal matrix with the components of v 
on its diagonal) is positive semidefinite, we can express the LP (2) as a semidefinite program 
with F(x) = diag(Ax +b), i.e., 

where A = [al . . . a,] E RnXm.In this case, of course, the feasible set is polyhedral; the 
boundary cannot be curved as in the general semidefinite program or the example shown in 
Fig. 1. 

Semidefinite programming can be regarded as an extension of linear programming where 
the componentwise inequalities between vectors are replaced by matrix inequalities, or, equiv- 
alently, the first orthant is replaced by the cone of positive semidefinite matrices. We can also 
view the semidefinite program (1) as a semi-infinite LP, since the matrix inequality F(x) 2 0 
is equivalent to an infinite set of linear constraints on x, i.e., zT F(x)z 2 0 for each z E Rn. 

"rhus x 5 y denotes componentwise inequality when x and y are vectors and matrix inequality when x and y 
are (symmetric) matrices. In this paper, the context will always make it clear which is meant. 
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It is therefore not surprising that the theory of semidefinite programming closely parallels the 
theory of linear programming, or that many algorithms for solving LPs should have general- 
izations that handle semidefinite programs. There are some important differences, however. 
Duality results are weaker for semidefinite programs than for LPs, and there is no straightfor- 
ward or practical simplex method for semidefinite programs2 

Before proceeding further we give a simple example of a nonlinear (convex) optimization 
problem that can be cast as a semidefinite program, but not as an LP. Consider the problem 

(cTx)2
minimize -

dTx 
subject to Ax +b 2 0, 

where we assume that dTx > 0 whenever Ax + b 2 0. We start with the standard trick of 
introducing an auxiliary variable t that serves as an upper bound on the objective: 

minimize t 

subject to Ax +b 2 0, 


In this formulation, the objective is a linear function of the variables x and t; the nonlinear 
(convex) objective in (3) shows up as a nonlinear (convex) constraint in (4). These constraints, 
in turn, can be expressed as a linear matrix inequality in the variables x and t: 

minimize t 

diag(Ax +b) 0 0 
(5) subject to 

cTx dTx 

Thus we have reformulated the nonlinear (convex) problem (3) as the semidefinite program (5). 
The linear matrix inequality in the constraint of the semidefinite program (5) demonstrates 

two standard tricks: representing multiple linear matrix inequalities as one block-diagonal 
matrix inequality and using Schur complements to represent a nonlinear convex constraint as 
a linear matrix inequality. Of course the 2 x 2 matrix inequality 

is equivalent to dTx 2 0 and t - 2 0 (with t 2 0, cTx = 0 if dTx = 0). Since ( ~ ~ x ) ~ / d ~ x  
we have assumed that Ax + b 2 0 implies dTx > 0, we see that the constraints in (4) are 
equivalent to the matrix inequality in (5). The expression t - ( ~ ~ x ) ~ / d ~ xis called the Schur 
complement of dTx in the matrix inequality (6). Recognizing Schur complements in nonlinear 
expressions is often the key step in reformulating nonlinear convex optimization problems as 
semidefinite programs. 

There are good reasons for studying semidefinite programming. First, positive semidef- 
inite (or definite) constraints directly arise in a number of important applications. Second, 
many convex optimization problems, e.g., linear programming and (convex) quadratically 

2 ~ e e ,however, Anderson and Nash [9] for simplex-like methods in semi-infinite linear progamming and 
Pataki [86] and Lasserre [62]for extensions of the simplex method to semidefinite programming. 
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constrained quadratic programming, can be cast as semidefinite programs, so semidefinite 
programming offers a unified way to study the properties of and derive algorithms for a wide 
variety of convex optimization problems. Most importantly, however, semidefnite programs 
can be solved very ejiciently, both in theory and inpractice. 

Theoretical tractability follows from convexity, along with the observation that we can 
construct, in polynomialtime, a cutting plane for the constraintset through any giveninfeasible 
point (see, e.g., [17, 52.31 or [loll). One can therefore apply the ellipsoid method of Yudin 
and Nernirovsky and Shor (see [115,99]) to solve problem (1) in polynomial time. In practice, 
however, the ellipsoid method is slow. 

Some general methods for nondifferentiable convex optimization are described by Shor 
[loo], Kiwiel [57], and Hiriart-Urmty and Lemarechal[47]. These methods are more efficient 
in practice than the ellipsoid method and can be used to solve semidefiniteprograms. 

In this paper we consider recently developed interior-point methods for semidefinitepro-
gramming. These methods enjoy several properties that make them especially attractive. 

Practical ejiciency. It is now generally accepted that interior-point methods for 
LPs are competitive with the simplex method and even faster for problems with 
more than 10,000 variables or constraints (see, e.g., [66]). Similarly, our experi-
ence with system and control applications suggests that interior-point methods for 
semidefinite programs are competitive with other methods for small problems and 
substantially faster for medium and large-scale problems. As a very rough rule-of-
thumb, interior-point methods solve semidefiniteprograms in about 5-50 iterations; 
each iteration is basically a least-squares problem of the same size as the original 
problem. 
Theoretical ejiciency. A worst-case analysis of interior-point methods for semidef-
inite programming shows that the effort required to solve a semidefinite program to 
a given accuracy grows no faster than a polynomial of the problem size. 
Ability to exploitproblem structure. Most of the computational effort in an interior-
point method for semidefiniteprogrammingis in the least-squaresproblems that must 
be solved at each iteration. These least-squares problems can be solved by iterative 
methods such as conjugate-gradients,which can take advantage of problem structure. 
Sparsity is one well-known example of structure; in engineering applications many 
other types arise (e.g., Toeplitz structure). 

1.2. Historical overview. An early paper on the theoretical properties of semidefinite 
programs is by Bellman and Fan [13]. Other references discussing optimality conditions are 
by Craven and Mond [20], Shapiro [97], Fletcher [31], Allwright [7], Wolkowicz [I121, and 
Kojima, Kojima, and Hara [58]. 

Many researchers have worked on the problem of minimizing the maximum eigenvalueof 
a symmetric matrix, which can be cast as a semidefinite program (see 52). See, for instance, 
Cullum, Donath, and Wolfe [21], Goh and Teo [41], Panier [84], Allwright [8], Overton 
[78, 791, Overton and Womersley [81, 801, Ringertz [93], Fan and Nekooie [27], Fan [26], 
Hiriart-Urruty and Ye [48], Shapiro and Fan [98], and Pataki [85]. 

Interior-point methods for LPs were introduced by Karmarkar in 1984 [55], although 
many of the underlying principles are older (see, e.g., Fiacco and McCormick [29], Lieu and 
Huard [63], and Dikin [23]). Karmarkar's algorithm and the interior-point methods developed 
afterwards combine a very low, polynomial, worst-case complexity with excellent behavior 
in practice. Karmarkar's paper has had an enormous impact, and several variants of his 
method have been developed (see, e.g., the survey by Gonzaga [42]). Interior-point methods 
were subsequently extended to handle convex quadratic programming and to certain linear 
complementarity problems (see, e.g., Kojima et al. [59]). 
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An important breakthrough was achieved by Nesterov and Nemirovsky in 1988 [71- 
741. They showed that interior-point methods for linear programming can, in principle, be 
generalized to all convex optimization problems. The key element is the knowledge of a barrier 
function with a certain property: self-concordance. To be useful in practice, the barrier (or 
really, its first and second derivatives) must also be computable. Nesterov and Nemirovsky 
show that a self-concordant barrier function exists for every convex set, but unfortunately their 
universal self-concordant barrier is not readily computable. 

Sernidehite programs are an important class of convex optimization problems for which 
readily computable self-concordant barrier functions are known and, therefore, interior-point 
methods are applicable. At the same time, they offer a simple conceptual framework and make 
possible a self-contained treatment of interior-point methods for many convex optimization 
problems. 

Independently of Nesterov and Nemirovsky, Alizadeh [3] and Kamath and Karmarkar 
[52,53] generalized interior-point methods from linear programming to semidefinite program- 
ming. Other recent articles on interior-point methods for semidefinite programming are by 
Jarre [50], Vandenberghe and Boyd [log], Rendl, Vanderbei, and Wolkowicz [92], Alizadeh, 
Haeberly, and Overton [5], Kojima, Shindoh, and Hara [61], Faybusovich [28], Gahinet and 
Nemirovsky [36], and Freund [34]. An excellent reference on interior-point methods for 
general convex problems is by den Hertog [22]. 

1.3. Outline. In 92 we describe several applications of semidefinite programming. Sec- 
tion 3 covers duality theory for semidefinite programs, emphasizing the similarities and differ- 
ences with linear programming duality. In 94 we introduce a barrier function for linear matrix 
inequalities and the concepts of central points and central path. In 55 we describe several 
primal-dual interior-point methods for semidefinite programming. These methods require 
feasible primal and dual initial points; 96 describes some methods for finding such points or 
modifying the algorithms to remove this requirement. In 57 we describe a few extensions of 
semidefinite programming, including techniques for exploiting problem structure. 

In this survey we emphasize primal-dual methods and do not consider several important 
and useful algorithms, such as the projective method of Karmarkar (or, rather, its general- 
ization to semidefinite programs given in [76, 94.31) and the projective method of Nesterov 
and Nemirovsky [76, $4.41 and Nemirovsky and Gahinet [69]. Our motivation for the re- 
striction to primal-dual methods is twofold. First, primal-dual methods are generally more 
efficient in practice and, second, their behavior is often easier to analyze. Finally, all interior- 
point methods for semidehite programs are based on similar principles, so we hope that 
this paper can serve as a tutorial introduction to other interior-point methods not covered 
here. 

2. Examples. In this section we list a few examples and applications of semidefinite 
programming. The list is not exhaustive, and our treatment of the two most prominent ap- 
plication areas-combinatorial optimization and control theory-is only cursory. Surveys of 
semidefinite programming in both fields have already appeared; see [17] for control theory 
and [4] for combinatorial optimization. Our purpose is to give an idea of the generality of the 
problem, to point out the connections between applications in different areas, and to provide 
references for further reading. 

See Nesterov and Nemirovsky [76, 96.41 for more examples. 
Quadratically constrained quadratic programming. A convex quadratic constraint 

(Ax + b)T(Ax + b) - d 5 0, with x E R ~ ,cTx - can be written as 
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The left-hand side depends affinely on the vector x: it can be expressed as 

with 

where A = [al . . . ak]. Therefore, a general (convex) quadratically constrained quadratic 
program (QCQP) 

minimize fo(x) 
subject to fi(x) 5 0, i = 1, . . . , L ,  

where each fi is a convex quadratic function fi(x) = (Aix + b ) T ( ~ ~ x  crx di,can+ b) - -
be written as 

minimize t 

I Aox + bo 


subject to [ (Aox + bo)T c ix  + do + t 

which is a semidefinite program with variables x E Rk and t E R. This semidefinite program 
has dimensions rn = k + 1and n = where Ai E RnrXk.no + . . . + n ~ ,  

While it is interesting to note that QCQPs can be cast as semidefinite programming 
problems, it may not be a good idea algorithmically. Indeed, a more efficient interior-point 
method for QCQPs can be developed by using the Nesterov and Nemirovsky formulation 
as a problem over the second-order cone (see [76, $6.2.31). The semidefinite programming 
formulation will be less efficient, especially when the matrices Ai have high rank. 

Maximum eigenvalue and matrix norm minimization. Suppose the symmetric matrix 
A(x)dependsaffinelyonx E Rk: A(x) = A0+xlAl+. . .+xkAk,  whereAi = AT E Rpxp. 
The problem of minimizing the maximum eigenvalue of the matrix A(x) can be cast as the 
semidefinite program 

minimize t 
subject to t I  -A(x) 2 0, 

with variables x E Rk and t E R. Problems of this type arise in control theory, structural 
optimization, graph theory and combinatorial optimization, and other fields. See Overton [79], 
Mohar and Poljak [67], and Grotschel, Lovasz, and Schrijver 144, Chap. 91 for surveys. 

Several interesting related problems can be solved using semidefinite programming. For 
example, to minimize the sum of the r largest eigenvalues of A(x), one solves the semidefinite 
program in t ,  X = x T ,  and x: 

minimize r t  + TrX 
subject to t I  + X -A(x) 2 0, 

X 2 0. 

Here TrX denotes the trace of a symmetric matrix X E RPXP, i.e., TrX = XI1+ . . . + Xpp. 
For a proof, see Nesterov and Nemirovsky [76, p. 2381 or Alizadeh [I, 92.21. The semidefinite 
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program (7) has dimensions rn = 1 + k + p(p  + 1)/2 and n = 2p. These results can also 
be extended to problems involving absolute values of the eigenvalues or weighted sums of 
eigenvalues (see Alizadeh [I,  Chap. 21). 

Another related problem is the minimization of the (spectral, or maximum singular value) 
norm IIA(x)II ofamatrixA(x) = Ao+xlAl +.. .+xkAkE RPxq. (HeretheAi neednotbe 
symmetric.) This can be cast as the semidefinite program 

minimize t 

subject to 

with variables x E R~ and t E R. The semidefinite program (8) has dimensions rn = k + 1 
andn = p + q .  

Note that the objectives in these problems, i.e., the maximum eigenvalue, the sum of the 
largest eigenvalues, and the norm, are nondifferentiable (but of course convex) functions of x. 

Logarithmic Chebychev approximation. Suppose we wish to solve Ax x b approx- 
imately, where A = [al . ..a,IT E R P " ~  and b E RP. In Chebychev approximation we 
minimize the em-norm of the residual, i.e., we solve 

minimize max la'x - bi I .  
i 

This can be cast as an LP, with x and an auxiliary variable t as variables: 

minimize t 


subject to -t 5 a r x  - bi 5 t ,  i = 1, . . . ,p.  


In some applications bi has the dimension of a power or intensity and is typically expressed 
on a logarithmic scale. In such cases the more natural optimization problem is 

(9) minimize max 1 log(a;x) - log(bi)1 
1 

(assuming bi > 0 and interpreting log(arx) as -00 when aTx 5 0). 
This logarithmic Chebychev approximation problem can be cast as a semidefinite program. 

To see this, note that 

(assuming aTx > 0). Problem (9) is therefore equivalent to 

minimize t 

subject to l / t  p aTx/bi p t ,  i = 1, .. . ,p 

minimize t 

t -a rx /b i  0 
subject to aTx/bi 1 I 2 0, i = 1, .. . ,p,  

1 t 

which is a semidefinite program. This example illustrates two important points. First, it 
shows that semidefinite programming includes many optimization problems that do not look 
like (1) at first sight. And, second, it shows that the problem is much more general than linear 
programming, despite the close analogy. 
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Structural optimization. Ben-Tal and Bendsare in [14] consider the following problem 
from structural optimization. A structure of k linear elastic bars connects a set of p nodes. 
The geometry (topology and lengths of the bars) and the material (Young's modulus) are fixed; 
the task is to size the bars, i.e., determine appropriate cross-sectional areas for the bars. In 
the simplest version of the problem we consider one fixed set of externally applied nodal 
forces J; , i = 1 ,  . . . ,p. (More complicated versions consider multiple loading scenarios.) 
The vector of (small) node displacements resulting from the load forces f will be denoted d. 
The objective is the elastic stored energy (112)f 'd, which is a measure of the inverse of the 
stiffness of the structure. We also need to take into account constraints on the total volume 
(or equivalently, weight) and upper and lower bounds on the cross-sectional area of each bar. 

The design variables are the cross-sectional areas xi. The relation between f and d is 
linear: f = A(x)d, where 

is called the stiffness matrix. The matrices Ai are all symmetric positive semidefinite and 
depend only on fixed parameters (Young's modulus, length of the bars, and geometry). The 
optimization problem then becomes 

minimize f 'd 
subject to f = A(x)d, 

where d and x are the variables, u is maximum volume, li are the lengths of the bars, and xi, 
xi are the lower and upper bounds on the cross-sectional areas. For simplicity, we assume that 
xi > 0 and that A(x) > 0 for all positive values of xi. We can then eliminate d and write 

minimize f 'A(x)-' f 

subject to Ck 

lixi 5 u ,  

minimize t 

subject to [; A::)]zo. 

which is a semidefinite program in x and t .  (Note that we have used Schur complements to 
express f 'A(x)-' f xj t as a linear matrix inequality.) 
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Pattern separation by ellipsoids. The simplest classifiers in pattern recognition use hy- 
perplanes to separate two sets of points { x l ,. . . , x ] and { y l , . . . , y L ] in RP. The hyperplane 
defined by a T x + b = 0 separates these two sets if 

This is a set of linear inequalities in a E RP and b E R which can be solved by linear 
programming. If the two sets cannot be separated by a hyperplane, we can try to separate them 
by a quadratic surface. In other words, we seek a quadratic function f (x) = X ~ A X+ bTx + c 
that satisfies 

These inequalities are a set of linear inequalities in the variables A = E RPxP, b E RP, 
and c E R. (So the total number of variables is (p(p + 1)/2) + p + 1.) Again the problem 
can be solved using linear programming. 

We can place further restrictions on the quadratic surface separating the two sets. As an 
example, for cluster analysis we might try to find an ellipsoid that contains all the points xi  
and none of the y J (see Rosen [95]). This constraint imposes the condition A > 0, in addition 
to the linear inequalities (10) and (1 I), on the variables A, b ,  and c.  Thus, we can find an 
ellipsoid that contains all the xi but none of the y J  (or determine that no such ellipsoid exists) 
by solving a semidefinite programming feasibility problem. 

We can optimize the shape and the size of the ellipsoid by adding an objective function and 
other constraints. For example, we can search for the "most spherical" ellipsoid as follows. 
The ratio of the largest to the smallest semi-axis length is the square root of the condition 
number of A.  To make the ellipsoid as spherical as possible, one can introduce an additional 
variable y,  add the constraint 

and minimize y over (lo), (1 I), and (12). This is a semidefinite program in the variables 
y, A,  b ,  and c.  This semidefinite program is feasible if and only if there is an ellipsoid that 
contains all the xi and none of the y j ;  its optimum value is 1 if and only if there is a sphere 
that separates the two sets of points. A simple example is shown in Fig. 2. 

Statistics. Semidefinite programs arise in minimum trace factor analysis (see Bentler and 
Woodward [IS], Fletcher [30,31], Shapiro [96], and Watson [110]). 

Assume x E RP is a random vector, with mean .iand covariance matrix C. We take 
a large number of samples y = x + n ,  where the measurement noise n has zero mean, is 
uncorrelated with x ,  and has an unknown but diagonal covariance matrix D. It follows that 
2= C + D, where 2denotes the covariance matrix of y .  We assume that we can estimate 
2 with high confidence, i.e., we consider it a known, constant matrix. 

We do not know C, the covariance of x ,  or D, the covariance matrix of the measurement 
noise. But they are both positive semidefinite, so we know that C lies in the convex set 

c A (2- D I f: - D 2 0 ,  D > 0, Ddiagonal}. 

This fact allows us to derive bounds on linear functions of C by solving semidefinite program- 
ming problems over the set C. 
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FIG. 2 .  Cluster analysis using ellipsoids. The ellipsoid shown minimizes condition number among all ellipsoids 
containing all the x i  (shown as stars) and none of the y j  (shown as circles). Finding such an ellipsoid can be cast 
as a semidejinite program, hence eficiently solved. 

As an example, consider the sum of the components of x ,  i.e., eTx where e is the vector 
with all components equal to 1. The variance of eTx is given by 

We do not know C, and so cannot say exactly what eT C e  is. But by determining the maximum 
and minimum of eT C e  over the set C, we can determine an interval in which it lies. In other 
words, we can compute upper and lower bounds on eT Ce .  

It is easy to see that the upper bound is eT k e .  A lower bound can be computed by solving 
the semidefinite program 

P 

maximize di 

(13) 
subject to 

i=l 

2 - diag(d) 2 0, 
d > 0. 

Fletcher [30] calls (13) the educational testing problem. The vector y gives the scores of a 
random student on a series of p tests, and eTy gives the total score. One considers the test to 
be reliable if the variance of the measured total scores eTy is close to the variance of eTx over 
the entire population. The quantity 

is called the reliability of the test. By solving the semidefinite program (13) one can compute 
a lower bound for p. 

Semidefinite programming also has applications in optimal experiment design (see 
Pukelsheim [88]). 

Geometrical problems involving quadratic forms. Many geometrical problems involv- 
ing quadratic functions can be expressed as semidefinite programs. We will give one simple 
example. Suppose we are given k ellipsoids E l ,  . . . ,Ek described as the sublevel sets of the 
quadratic functions 

i.e., Ei = { x l f i ( x )  5 0). The goal is to find the smallest ball that contains all k of these 
ellipsoids (or equivalently, contains the convex hull of their union). 
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The condition that one ellipsoid contain another can be expressed in terms of a matrix 
inequality. Suppose that the ellipsoids E = { xIf ( x )  5 0)and = { x I f ( x )  5 01, with 

f ( x ) = X ~ A X+ 2bTx + c ,  f ( x )  = x T ~ x+ 2bTx + C", 

have nonempty interior. Then it can be shown that E contains 2if and only if there is a t 2 0 
such that 

(The "if" part is trivial; the "only if" part is less trivial. See [17, 1051.) 
Returning to our problem, consider the ball Srepresented by f  ( x )  = x  T x  -2xTx +y 5 0. 

Scontains the ellipsoids E l , . . . ,Ek if and only if there are nonnegative r l , . . . , zk such that 

Note that these conditions can be considered one large linear matrix inequality in the variables 
xc, y ,and t l ,. . . , t k .  

Our goal is to minimize the radius of the ball S ,  which is r ,/-.= To do this we 
express the condition r2 5 t as the matrix inequality 

and minimize the variable t . 
Putting it all together, we see that we can find the smallest ball containing the ellipsoids 

E l , . . . ,Ek by solving the semidefinite program 

minimize t 

subject to 
I A;

b r  
bi 
ci ] , i = l ,  . . , k .  

The variables here are x,, 71, . . . , t k ,  y ,  and t .  
This example once again demonstrates the breadth of problems that can be reformulated 

as semidefinite programs. It also demonstrates that the task of this reformulation can be 
nontrivial. 

A simple example is illustrated in Fig. 3. 
Combinatorial and nonconvex optimization. Semidefinite programs play a very use- 

ful role in nonconvex or combinatorial optimization. Consider, for example, the quadratic 
optimization problem 

minimize fo(x)  

subject to f , ( x )  5 0 ,  i = 1 ,  . . . , L ,  


where f i ( x )  = xTAix  + 2b'x + c; , i = 0, 1 ,  . . . ,L. The matrices Ai can be indefinite, 
and therefore problem (14) is a very hard, nonconvex optimization problem. For example, 
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FIG. 3. Smallest ball containingjive ellipsoids. Finding such a ball can be cast as a semidejiniteprogram, hence 
eficiently solved. 

it includes all optimization problems with polynomial objective function and polynomial 
constraints (see [76,§6.4.4], [loll).  

For practical purposes, e.g., in branch-and-bound algorithms, it is important to have good 
and cheaply computable lower bounds on the optimal value of (14). Shor and others have 
proposed to compute such lower bounds by solving the semidefinite program (with variables 
t and ti) 

maximize t 

A0 bo
(15) subject to [ b; co - t 

One can easily verify that this semidefinite program yields lower bounds for (14). Suppose x 
satisfies the constraints in the nonconvex problem (14), i.e., 

for i = 1, . . . ,L, and t ,  t l ,  . . . ,tLsatisfy the constraints in the semidefinite program (15). 
Then 

Therefore t 9 fo(x) for every feasible x in (14), as desired. Problem (15) can also be 
derived via Lagrangian duality; for a deeper discussion, see Shor [ lol l  or Poljak, Rendl, and 
Wolkowicz [87]. 

Most semidefinite relaxations of NP-hard combinatorial problems seem to be related to 
the semidefinite program (15) or the related one, 

minimize TrXAo +2btx + co 
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where the variables are X = 	 We will see in 53 that (16) is the dual xTE R~~~and x E R ~ .  
of Shor's relaxation (15); the two problems (15) and (16) yield the same bound. 

Note that the constraint 

is equivalent to X 2 xxT. The semidefinite program (16) can therefore be directly interpreted 
as a relaxation of the original problem (14), which can be written as 

minimize TrXAo +2bix + co 

(18) 	 subject to TrXAi + 2bTx + ci i0, i = 1, . . . , L ,  

X =xxT. 

The only difference between (1 8) and (16) is the replacement of the (nonconvex) constraint X = 
xxT by the convex relaxation X 2 xxT. It is also interesting to note that the relaxation (16) 
becomes the original problem (1 8) if we add the (nonconvex) constraint that the matrix on the 
left-hand side of (17) is rank one. 

As an example, consider the (-	 1, 1)-quadratic program 

minimize x T ~ x+2bTx 

subject to x? = 1, i = 1, . . . ,k ,  

which is NP-hard. The constraint xi E { - 1, 1) can be written as the quadratic equality con- 
straint x? = 1or, equivalently, as two quadratic inequalitiesx' 5 1 and$ > 1. Applying (l6), 
we find that the semidefinite program in X = xTand x, 

minimize TrXA + 2bTx 

subject to Xii = 1, i = 1, . . . ,k ,  

yields a lower bound for (19). In a recent paper on the MAX-CUT problem, which is a specific 
case of (19) where b = 0 and the diagonal of A is zero, Goemans and Williamsonproved that 
the lower bound from (20) is at most 14% suboptimal (see [39,40]). This is much better than 
any previously known bound. Similar strong results on semidefinite programming relaxations 
of NP-hard problems have been obtained by Karger, Motwani, and Sudan [54]. 

The usefulness of semidefinite programming in combinatorial optimization was recog- 
nized more than twenty years ago (see, e.g., Donath and Hoffman [24]). Many people seem 
to have developed similar ideas independently. We should however stress the importance of 
the work by Grotschel, LovLz, and Schrijver [44, Chap. 91, [64], who have demonstrated 
the power of semidefinite relaxations on some very hard combinatorial problems. The recent 
development of efficient interior-point methods has turned these techniques into powerful 
practical tools; see Alizadeh [I-31, Kamath and Karmarkar [52,53], and Helrnberg et al. [46]. 

For a more detailed survey of semidefinite programming in combinatorial optimization, 
we refer the reader to the recent paper by Alizadeh [4]. 

Control and system theory. Semidefinite programming problems frequently arise in 
control and system theory; Boyd et al. catalog many examples in [17]. We will describe one 
simple example here. 

Consider the diferential inclusion 



www.manaraa.com

62 LIEVEN VANDENBERGHE AND STEPHEN BOYD 

where x(t) E R', u(t) E RP, and y(t) E RP. In the terminology of control theory, this is 
described as a linear system with uncertain, time-varying, unity-bounded, diagonal feedback. 

We seek an invariant ellipsoid, i.e., an ellipsoid E such that for any x and u that satisfy (2 l), 
x (T) E E implies x (t) E E for all t >_ T. The existence of such an ellipsoid implies, for 
example, that all solutions of the differential inclusion (21) are bounded. 

The ellipsoid E = { x  I xT PX 5 11, where P = PT > 0, is invariant if and only if the 
function V (t) = x (t)TPX (t) is nonincreasing for any x and u that satisfy (2 1). In this case 
we say that V is a quadratic Lyapunov function that proves the stability of the differential 
inclusion (2 1). 

We can express the derivative of V as a quadratic form in x (t) and u (t): 

We can express the conditions lui (t) 1 5 I yi (t) 1 as the quadratic inequalities 

2 O u(f) ] < ~ , i = l , . . . ,(23) u?(t) - yi (t) = [ I T [ c0 Eii ] [ X(t) - p ,  

where ci is the ith row of C and Eii is the matrix with all entries zero except the ii  entry, 
which is 1. 

Putting it all together, we find that E is invariant if and only if (22) holds whenever (23) 
holds. Thus the condition is that one quadratic inequality should hold whenever some other 
quadratic inequalities hold, i.e., 

(24) forallz ER'+P,  z T c z  5 0 ,  i = 1, . . . ,p ==+ 5 0 ,  

where 

In the general case, simply verifying that (24) holds for a given P is very difficult. But 
an obvious sufficient condition is 

(25) thereexist tl 2 0 ,  ..., tp2 0 suchthat To 5 tlTl +.. .+tpTp. 

Replacing the condition (24) with the stronger condition (25) is called the S-procedure in 
the Soviet literature on control theory and dates back to at least 1944 (see [17, p. 331, [33], 
[65]). Note the similarity between Shor's bound (see (14) and (15)) and the S-procedure ((24) 
and (25)). Indeed Shor's bound is readily derived from the S-procedure and vice versa. 

Returning to our example, we apply the S-procedure to obtain a sufficient condition for 
the invariance of the ellipsoid E: for some D = diag(t1, . . . , t,), 

This is a linear matrix inequality in the (matrix) variables P = pT  and (diagonal) D .  Hence, 
by solving a semidefinite feasibility problem we can find an invariant ellipsoid (if the problem 
is feasible). One can also optimize various quantities over the feasible set; see [17]. Note 
that (26) is really a convex relaxation of the condition that E be invariant, obtained via the 
S-procedure. 

The close connections between the S-procedure, used in control theory to form semidef- 
inite programming relaxations of hard control problems, and the various semidefinite relax- 
ations used in combinatorial optimization do not appear to be well known. 
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3. Duality. 

3.1. The dual semidefinite program. The dual problem associated with the semidefinite 
program (1) is 

maximize -TrFoZ 
subjectto TrF;Z =c; ,  i = 1, . . . , m ,  

z 2 0. 

Here the variable is the matrix Z = zTE RnXn,which is subject to m equality constraints 
and the matrix nonnegativity condition. Note that the objective function in (27) is a linear 
function of Z. We will say that Z = zTE RnXnis dual feasible if TrZF; = ci, i = 1, . . . ,m 
and Z 2 0. We will also refer to the original semidefinite program (1) as the primal problem. 

The dual problem (27) is also a semidefinite program, i.e., it can be put in the same form 
as the primal problem (1). For simplicity, let us assume that the matrices F1,. . . , F,,, are 
linearly independent. Then we can express the affine set 

in the form 

where p = (n(n + 1)/2) - m and the G; are appropriate matrices. We define d E RP by 
d; = TrFoGi, so that dT  = TrFo(G(y) - Go). Then the dual problem becomes (except 
for a constant term in the objective and a change of sign to transform maximization into 
minimization) 

minimize d r y  
subject to G(y) 2 0, 

which is a semidefinite program. It is possible to use notation that, unlike ours, emphasizes the 
complete symmetry between the primal and dual semidefinite programs (see, e.g., Nesterov 
and Nemirovsky [76, $4.21). Our notation is chosen to make the primal problem as "explicit" 
as possible, with x denoting a "free" variable. 

As an illustration, let us apply the definition of the dual semidefinite program to the LP (2), 
i.e., take Fo= diag(b) and F; = diag(a;). The dual semidefinite program (27) becomes 

maximize -Tr diag(b)Z 
(28) 	 subject to Tr diag(a;)Z = ci, i = 1, . . . ,m ,  

z 2 0. 

This semidefinite program can be simplified. The objective function and the equality con- 
straints involve only the diagonal elements of Z. Moreover, if Z 2 0 we can always replace 
the off-diagonal elements of Z by zeros and still retain a positive semidefinite matrix. Instead 
of optimizing over all symmetric n x n matrices 2,we can therefore limit ourselves to diagonal 
matrices Z = diag(z). Problem (28) then reduces to 

maximize -bT z 
subject to z 10, 

a,?z=c;, i = l ,  ...,m,  

which is the familiar dual of the LP (2). 
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In this example, the diagonal structure of the semidefinite program allows us to reduce the 
dual problem to one with fewer variables. In general, the dual problem can often be simplified 
when the matrices Fi are structured. For example, if the matrix F(x) is block diagonal, the 
dual variables Z can be assumed to have the same block-diagonal structure. 

Linear programming duality is very strong as a result of the polyhedral character of the 
feasible set: The optimum values of (2) and (29) are always equal, except in the pathological 
case where both problems are infeasible. (We adopt the standard convention that the optimum 
value of (2) is +oo if the problem is infeasible and the optimum value of (29) is -00 if the 
dual problem is infeasible.) However, duality results for general semidefinite programs are 
weaker, as we will see below. 

Let us return to our discussion of the dual semidefinite program. The key property 
of the dual semidefinite program is that it yields bounds on the optimal value of the primal 
semidefinite program (and vice versa). Suppose that Z is dual feasible and x is primal feasible. 
Then 

m 

in which we use the fact that TrAB 0 when A = > 0 and B = BT > 0. Thus we have 

i.e., the dual objective value of any dual feasible point Z is smaller than or equal to the primal 
objective value of any primal feasible point x. We refer to the difference as the duality gap q 
associated with x and Z: 

Note that the duality gap is a linear function of x and Z, even though the second expression 
in (32) looks bilinear. 

Let p* denote the optimal value of the semidefinite program (I), i.e., 

Ap* = inf { cTx I F(x) L 0 ) , 
and let Z be dual feasible. Since (3 1) holds for any feasible x, we conclude that -TrZ Fo 5 p*. 
In other words, dual feasible matrices yield lower bounds for the primal problem. 

Similarly, primal feasible points yield upper bounds for the dual problem d* 5 cTx, 
where d* is the optimal value of the dual semidefinite program (I), 

It follows that d* 5 p*,i.e., the optimal value of the dual problem is less than or equal to the 
optimal value of the primal problem. In fact, equality usually holds. Let Xopt and Zopt denote 
the primal and dual optimal sets, i.e., 

Note that Xopt (or Zopt) can be empty, even if p* (or d*) is finite, as in the semidefinite program 

minimize t 

subject to [ ; :] > 0. 

THEOREM3.1. We have p* = d* ifeither of the following conditions holds. 
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1. The primal problem ( 1 )  is strictly feasible, i.e., there exists an x with F ( x )  > 0. 
2. The dual problem (27) is strictly feasible, i.e., there exists a Z with Z 	= zT > 0, 

TrF,Z =ci,i = 1, . . . ,m. 
If both conditions hold, the optimal sets LPtand ZOptare nonempty. 

For a proof, see Nesterov and Nemirovsloj [76, $4.21 or Rockafellar [94, $301. Theo-
rem 3.1 is an application of standard duality in convex analysis, so the constraint qualification 
is not surprising or unusual. Wolkowicz [I121and Ramana [89-911 have formulated two dif- 
ferent approaches to a duality theory for semidefinite programming that do not require strict 
feasibility. For our present purposes, the standard duality outlined above will be sufficient. 

Assume the optimal sets are nonempty, i.e., there exist feasible x and Z with 

From (30),we have TrF ( x ) Z  = 0. Since F ( x )  > 0 and Z > 0,we conclude that Z F ( x )  = 0. 
(Here we use the fact that if A and B are symmetric positive semidefinite and TrA  B = 0, then 
AB = 0.) The condition Z F ( x )  = 0 is the complementary slackness condition; it states that 
the ranges of the symmetric matrices Z and F ( x )  are orthogonal. This generalizes the familiar 
complementary slackness condition for the LP (2)and its dual (29).Taking Z = diag(z)and 
F ( x )  = diag(Ax+b) ,we see that Z F ( x )  = 0 if and only if zi ( A x+b)i = 0 for i = 1 ,  . . . ,n, 
i.e., the zero patterns in z and Ax + b are complementary. (See [6]for a detailed analysis of 
complementarity in semidefinite programming.) 

Theorem 3.1 gives us optimality conditions for the semidefinite program (1)if we assume 
strict primal and dual feasibility: x is optimal if and only if there is a Z such that 

Example. We first consider a simple example where p* # d*: 

minimize xl

[ 0 X l  0 
subject to X I  1 2  0 2 0. 

0 0 X l+ l  
] 

The feasible set is { [ X I  x21T I X I  = 0,  x2 > O ) ,  and therefore p* = 0. The dual problem can 
be simplified to 

maximize -22 

Z 1 

subject to (l-;)I2 0[ 
0 22 

which has feasible set {[zl z2IT ( 21 > 0 ,  z2 = 1 }. The dual problem therefore has optimal 
value d* = -1. Of course, this semidefinite program violates both conditions in Theorem 3.1. 
Both problems are feasible, but not strictly feasible. Also note the contrast with linear pro- 
gramming, where it is impossible to have a finite nonzero duality gap at the optimum. 

Example. The educational testing problem (13)can be written as 

minimize -eTd 

subject to 
diag(d) 
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where e is a vector with all components equal to 1. In other words, problem (13) is a semi- 
definite program with c = -e, 

(ei stands for the ith unit vector). Applying (27), we find as the dual problem 

maximize -Trk .Zll 

subject to (-Zll + Z22)ii= -1, 


Without loss of generality, we can assume the off-diagonal block Z12 is zero and ZZ2 is 
diagonal. These simplifications result in a more compact form of the dual: 

minimize 	 TkkQ 

subject to 	 Q = QT > 0, 
Q i i > l ,  i = l ,  ..., p. 

Example. Consider the matrix norm minimization problem mentioned in $2: 

minimize 	 ( 1  A (x) (1, 

x E R~ 

whereA(x) = Ao +xlAl + ...+xkAk. Weremindthereaderthat IIA(x)(( isthemaximum 
singular value of A (x) . 

The problem (34) is (an instance of) a basic problem that arises in the study of normed 
vector spaces; its optimum value is the norm of (the image of) A. in the quotient space of 
RPxq modulo span(A1, . . . ,Ak]. In this context we encounter the following dual of (34): 

maximize T ~ A ;  Q 

subjectto T ~ A T Q = O ,  i = 1,...,k, 

I l Q l l *  5 1. 

Here 11 Q 1 1 ,  	 is the norm dual to the maximum singular value norm, i.e., 

It can be shown that 11 Q 11, is the sum of the singular values of Q. It is also known that the 
optimal values of (34) and (35) are always equal. 

Let us verify that this (normed vector space) notion of duality coincides with semidefinite 
programming duality. The dual semidefinite program of problem (8) is 

maximize - 2 T r ~ ;  z12 
subject to T ~ A T z ~ ~0, i == 1, . . . ,k, 

TrZll +*z22 = 1, 
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This can be simplified. We have the following property: given a matrix Z12,there exist Zll ,  
ZZ2such that 

if and only if IIZ12((*I112. 
To see this, let Z12= uCV Tbe the singular value decomposition of Z12.The matrix C 

is square, diagonal, and of size minip, q), and its trace TrC is equal to ((Z12( 1 , .  

First assume that Zll and ZZ2satisfy (37). Then 


because the trace of the product of two positive semidefinite matrices is always nonnegative. 
As a consequence, 

-< -2TrC + TrZll +Trz22 

s o  IlZ1211* i 112. 
To prove the converse, suppose that 1 1  Z12 1 1 ,  I112. Then one can verify that 

with y = (1 - 2llZ12ll,) / (p  + q), satisfy (37). 
Problem (36) therefore reduces to 

maximize - 2 T r ~ l ~ 1 2  

subject to T ~ A T z ~ ~0, i = 1 ,  . . . ,k,= 

which is the same as (35) with Q = 2212. 
Problem (8) is always strictly feasible; it suffices to choose x = 0 and t > ( 1  A. ( 1 .  Applying 

Theorem 3.1, we conclude that the optimal duality gap is always zero. 
We refer the reader to the papers by Zietak [116, 1171 and Watson [ I l l ]  for more details 

and additional references on duality in matrix norm minimization. 
Example. In $2we claimed that the sum of the r largest eigenvalues of a matrix A(x) can 

be minimized by solving the semidefinite program (7). This formulation is due to Alizadeh [3, 
$2.21and Nesterov and Nernirovsloj [76, 56.4.31. Duality provides an elegant way to derive 
this result. 

It is well known that the sum of the r largest eigenvalues of a matrix A = AT E R P x P  

can be expressed as the optimal value of the problem 

maximize Trw A w 
subject to W E RPxr, 

w T w= I .  

http:56.4.31


www.manaraa.com

68 LIEVEN VANDENBERGHE AND STEPHEN BOYD 

This result is attributed to Fan [25]. Overton and Womersley [80] have observed that (38) can 
be expressed as the semidefinite program 

maximize TrA Zl 
subject to TrZ11 = r, 

Zll + 2 2 2  = I ,  

The equivalence can be seen as follows. The matrix Z12can be assumed to be zero without 
loss of generality. The matrix Z22 acts as slack variable and (39) simplifies to 

maximize T r AZl1 

subject to TrZll = r, 
0 < Zll < I. 

Overton and Womersley have shown that the extreme points of the feasible set of (40) are 
precisely the matrices that have the form Zll  = W wTfor some W E RPX',with wTW = I .  
The solution of (40) will be at one of those extreme points, and therefore (39) and (38) are 
equivalent. 

The semidefinite program (39) is in the dual form (27). The dimensions are n = 2p and 
m = 1 + p(p  + 1)/2. After a calculation, we obtain the corresponding primal problem: 

minimize r t  +TrX 
subject to t I  +X - A > 0, 

x 2 0, 

which is precisely the expression used in (7). 

3.2. Primal-dual problem formulation. In most semidefinite program problems that 
we encounter the hypothesis of Theorem 3.1 holds, so that d* = p*. (When the conditions 
do not hold it is possible, at least in principle, to reduce the original problem to one for which 
one of the conditions holds; see [17, $2.51. See also the recent paper by Freund [34] for an 
interior-point method that does not require strict feasibility.) 

Primal-dual methods for semidefinite programs, which we describe in detail in $5, generate 
a sequence of primal and dual feasible points x ( ~ )and z ( ~ ) ,where k = 0, 1, . . . denotes 
iteration number. We can interpret x ( ~ )as a suboptimal point that gives the upper bound 
p* < C ~ X ( ~ )  We can and Z(k )as a certijicate that proves the lower bound p* 2 - T ~ F ~ z ( ~ ) .  
bound how suboptimal our current point x ( ~ )is in terms of the duality gap r f k ) :  

Therefore the stopping criterion 

where E > 0 is some prespecified tolerance, guarantees E-suboptimality on exit. Indeed, the 
algorithm produces not only an 6-suboptimal point 2, but also a certificate (i.e., a dual feasible 
2)that proves 2 is 6-suboptimal. 

This idea is illustrated in the left plot of Fig. 4, which shows the values of the primal and 
dual objectives of the iterates of a primal-dual algorithm as a function of iteration number. 
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iteration 	 iteration 

FIG.4.  Convergence of a primal-dual algorithm. The problem is a matrix norm minimization problem (10 
matrices in R ' O ~ ' O ) ,  and the algorithm is described in 55.3. The plot on the left shows how the primal and dual 
objectives converge to the optimal value. The solid curve in the right plot is the duality gap, i.e., the difference 
between the primal anddual objectives. The dashed line is the difference between the current (primal) objective and 
the optimal value. At the kth iteration, we know the value of the duality gap (i.e., the solid curve); we do not know 
the value of the actual error (i.e., the dashed curve). 

The optimal value is shown as the dashed line. The particular semidefinite program is a matrix 
norm minimization problem; the algorithm used will be explained later (in 95.3), but is not 
relevant here. 

From this plot we can draw some interesting conclusions that illustrate some of the basic 
ideas behind primal-dual algorithms. After one iteration, we have found a point x(') with 
objective value cTx(') = 0.5. In fact, this point is only 0.04 suboptimal, but we don't know 
this after one iteration: we only know that the optimal value exceeds - T ~ F ~ Z ( ' )  = 0.26. After 
three iterations our primal point ~ ( ~ 1 ,  with objective value 0.46, is very nearly optimal, but we 
don't yet know it. All we can guarantee after three iterations is that the optimal value exceeds 
0.36. Over the next few iterations our dual point steadily improves; by thejfth iteration we 
can now conclude that our first (primal) iterate was at most 10% suboptimal! This example 
illustrates the important distinction between converging to a given tolerance and knowing (i.e., 
guaranteeing) convergence to a given tolerance. The possibility of terminating an optimization 
algorithm with a guaranteed accuracy of, say, lo%, is very useful in engineering applications. 

The duality gap rl(k) measures the width of our "uncertainty interval" for the optimal 
value p* at iteration k .  It is plotted at right in Fig. 4 as the solid curve, along with the actual 
difference between the current (primal) objective value and the optimal value, shown as the 
dotted curve. The important point is that after k iterations we know the duality gap, which is 
an upper bound on cTx(k) - p*, which of course we don't know. 

Primal-dual methods can also be interpreted as solving the primal-dual optimization 
problem 

minimize cTx+TrFoZ 

(41) 	 subject to F(x) > 0, Z > 0, 
TrFiZ = ci, i = 1 , .. . ,m .  

Here we minimize the duality gap cTx +TrFoZ over all primal and dual feasible points; the 
optimal value is known in advance to be zero. The duality gap is a linear function of x and Z, 
and therefore problem (4 1) is a semidefinite program in x and Z. 

At first glance there seems to be no benefit in considering the primal-dual optimization 
problem (4 1). Since the variables x and Z are independent (i.e., the feasible set is the Cartesian 
product of the primal and dual feasible sets) and the objective in (4 1) is the sum of the primal and 
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FIG.5 .  Contour lines of the barrierfunction (incremented in unit steps). x' is the minimizer of the barrier 
function, i.e., the analytic center of the linear matrix inequality (see 54.2). 

dual objectives, we can just as well solve the primal and dual problems separately. However, 
we shall see later that there is a benefit: in each step we use dual information (i.e., z ( ~ ) )  to 
help find a good update for the primal variable x ( ~ )and vice versa. 

4. The central path. From now on we assume strict primal and dual feasibility, i.e., we 
assumethereexistsanx with F(x) > OandaZ = ZT > OwithTrF,Z = c i , i  = 1 ,  .. . , m .  
We will also assume that the matrices Fi, i = 1, . . . ,m are linearly independent. 

4.1. Barrier function for a linear matrix inequality. The function 

log det F(x)-' 	 if F(x) > 0, 
otherwise 

is a barrierfunction for X A {x I F(x) > 0), i.e., @(x) is finite if and only if F(x) > 0 and 
becomes infinite as x approaches the boundary of X. There are many other barrier functions 
for X (for example, TrF(x)-' can be substituted for logdet F(x)-' in (42)), but this one 
enjoys many special properties. In particular, when F(x) > 0, it is analytic, strictly convex, 
and self-concordant (see [76]). 

Figure 5 shows the contour lines of the barrier function for the semidefinite program of 
Fig. 1. It illustrates that the function is quite flat in the interior of the feasible set and sharply 
increases toward the boundary. 

The gradient V@ (x) and the Hessian v2@(x) of @ at x are given by 

and 

for i ,  j = 1 ,  . . . ,m. Here F(x) ' /~  denotes the symmetric square root of F(x); similar 
formulas that use Cholesky factors of F(x) are also easily derived. Expressions (43) and (44) 
follow from the second-order expansion of log det X-' . If X and Y are symmetric with X > 0, 
then for small Y 

(45) 	 log det(X + Y)-' 
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For a set of linear inequalities aTx +bi > 0, i = 1, . . . ,n, the barrier function @ reduces 
to the familiar logarithmic barrier function used in interior-point linear programming: 

otherwise.I+h3 

In this case we can interpret @ as the potential function associated with a repelling force from 
each constraint plane, directed away from the plane and inversely proportional to the distance 
from the plane. To see this we simply note that 

where ri is the distance from x to the ith constraint plane. Thus, the contribution from the ith 
constraint is a force pointing away from the ith constraint plane (i.e., in the direction -ai / llai 11) 
with magnitude 1 / ri. 

4.2. Analytic center of a linear matrix inequality. In this section and in 54.3 we sup- 
pose that X is bounded. Since @ is strictly convex, it has a unique minimizer, which we denote 

(46) x* = 
A 

argmin @(x). 

We will refer to x* as the analytic center of the linear matrix inequality F(x) 2 0. 
It is important to note that the analytic center depends on the matrix inequality rather than 

the (strict) solution set X. The same set X can be represented by different matrix inequalities, 
which have different analytic centers. Simply adding redundant constraints to the semidefinite 
program depicted in Fig. 5, for example, will move x* to another position. 

From (43) we see that x* is characterized by 

Thus, F(x*)-' is orthogonal to the span of F1,. . . , F,. Note the similarity of the condition (47) 
and the equality constraints R F i Z  = ci, i = 1, . . . ,m arising in the dual semidefinite 
program (27). We will soon see a close connection between analytic centers and dual feasibility. 

In the case of a set of linear inequalities, the definition (46) coincides with Sonnevend's 
definition [102, 1031, i.e., 

x* = argmax f l(a7x + bi)
i=l 

subject to a'x + bi > 0, i = 1, . . . ,n. 

From this formula we see a simple geometric interpretation of the analytic center of a set of 
linear inequalities: x* is the feasible point that maximizes the product of the distances to the 
constraint planes (i.e., the planes defined by a r x  +bi = 0). Of course, we can also interpret the 
analytic center of a set of linear inequalities as the equilibrium point for the inverse-distance 
force field mentioned in 54.1. 

4.3. Computing the analytic center. In this section we consider the problem of com- 
puting the analytic center of a linear matrix inequality. We do this for several reasons. First, 
the analysis we will encounter here will give us a good interpretation of a quantity that will 
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play a key role in the algorithms we will later describe. Second, the algorithm described here 
foreshadows the primal-dual interior-point algorithms we will see later. 

Newton's method with line search can be used to efficiently compute the analytic center, 
given an initial strictly feasible point, i.e., x such that F(x) > 0.By definition, the Newton 
direction 6x at x is the vector that minimizes the second-order expansion of 4(x + v)  -4 (x) 
over all v E Rm. From (45) we obtain (with F A F(x)) 

6xN = argmin ( - R F  (gv i ~ i )  

V E Rm 


The norm used in equation (48) is the Frobenius norm i.e., llAllF = (TrAT~) '12= 
( C i j  Thus, the Newton direction 6xN is found by solving (48), which is a least- 
squares problem with m variables and n(n + 1)/2 equations. 

A line search is used to determine the length of the step to be made in the direction 6xN. 
We compute a step length that (approximately) minimizes 4 (x + p6x N, over all p E R, which 
can be done efficiently by using standard methods such as bisection. A simple precomputation 

makes the line search quite efficient. With 6 F A Cy!l6x,!Fi, we have 

4 ( ~+ p6xN)= 4(x) - logdet (I + p ~ - 1 / 2 6 ~ ~ - 1 / 2 )  -= O(X) 	 k l o g ( l  + ppi), 
i=l 

where pi are the eigenvalues of F-'/'~FF-'/'. The last expression shows that once we 
have computed the eigenvalues pi,  the derivatives of 4(x + p6x N,  can be computed in 0(n) 
operations. This idea will resurface in 95.5. 

The algorithm is as follows. 

Newton method for computing the analytic center 

given strictly feasible x. 

repeat 

1. Compute the Newton direction 6xN by solving the least-squares problem (48). 
2. Find j = argmin $I (x + p6x N). 
3. Update: x := x + @6xN. 

Of course it is well known that the asymptotic convergence will be quadratic. Nesterov 
and Nemirovsky in [76,§2.2] give a complete analysis of the global speed of the convergence 
of this algorithm. 
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THEOREM4.1. Let dk)denote the value of x in the previous algorithm after the kth 
iteration and assume 0 c E 5 0.5. For 

we have 4(dk))- r$(xl) 5 E. 

Note that the right-hand side of (49) does not depend on the problem size (i.e., m or n )  
at all. It only depends on the problem data (i.e., Fo, .. . ,F,) through the difference between 
the value of the barrier function at the initial point and the analytic center. For all practical 
purposes the term log, log,(l/~) can be considered a constant, say, five (which guarantees an 
accuracy of E = 2-32). 

We should mention two points. First, Theorem 4.1 holds for an "implementable" version 
of the algorithm as well, in which an appropriate approximate line search is used instead of 
the exact line search. Second, Nesterov and Nemirovsky give an explicit, readily computable 
stopping criterion that guarantees 4(dk))- q5 (x') 5 6 .  

4.4. The central path: Objective parametrization. Let us return to the primal semi- 
definite program (1). Consider the linear matrix inequality 

where p* < y < j5 A sup{cTx I F(x) > 0). It can be shown that the solution set to (50) 
is nonempty and bounded under our assumption that the semidefinite program (1) is strictly 
primal and dual feasible. Therefore, the analytic center of (50), defined as 

x'(y) = A argmin log det F(x)-I 
subject to F(x) > 0, 

cTx = y 

exists for p* < y < p. The curve described by x'(y) is called the central path for the 
semidefinite program (1). The central path passes through the analytic center of the constraint 
F(x) 2 0; as y approaches p* from above, the central point x* (y) converges to an optimal 
point; as y approachesj5 from below, it converges to a maximizer of cTx subject to F(x) 2 0. 
Thisis illustrated in Fig. 6, which shows the central path for the semidefinite program of Fig. 1. 

Writing out the optimality conditions for (5 I), we find that x'(y) satisfies 

where A is a Lagrange multiplier. It can be shown that A is positive on the part of the central 
path between the analytic center and the optimal point to which the path of centers converges. 
From (52) we see that the matrix F(X'(~))- ' /A is dual feasible when A > 0. Thus,points on 
the primal central path yield dual feasible matrices. 

The duality gap associated with the primal-dual feasible pair x = x'(y), Z = 
~(x+(y))- ' /A is 

Thus, the Lagrange multiplier A appearing in (52) is simply related to the duality gap of the 
point on the path of centers and the associated dual feasible point. 
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FIG.  6 .  The central path for the semidejnite program of Fig. 1 .  The dashed lines represent level sets cTx = y 
for six values y in the interval [ p i ,  a. The heavy dots are the analytic centers x * ( y )  of the linear matrix inequal- 
ity (50).The central path is formed by the analytic centers x t ( y )  when y varies between pi and?. 

In fact, the matrix F ( X * ( ~ ) ) - ' / ~  is not only dual feasible, but is itself on the central path 
for the dual semidefinite program, i.e., it solves 

minimize log det Z-' 
subjectto T r F i Z = c i ,  i = 1, . . . ,m, 

z > 0, 
n 

-TrFoZ = y - -
A '  

In other words, among all dual feasible Z with dual objective value y - n/X, the matrix 
F(x*(y))-'/A minimizes the barrier function logdet Z-'. Thus, we have a natural pairing 
between points on the primal central path and points on the dual central path; moreover, for 
these primal-dual central pairs x, Z, the matrices F(x) and Z are inverses of each other up to 
a scale factor. 

Almost all interior-point methods approach the optimal point by following the central 
path. They either literally return to the central path periodically or keep some measure for the 
deviation from the central path below a certain bound. The most natural measure has already 
been hinted at in $4.3. For every strictly feasible x, we define the deviation from the central 
path $(x) as 

$(x) is the difference between the value of the barrier function at the point x and the minimum 
of the barrier function over all points with the same value of cost function as x. Figure 7 shows 
the contour lines of $(x) for our example semidefinite program. The central path, on which 
+(x) =0,is shown as a solid curve. 

From $4.3, we have the following interpretation. The deviation from centrality $(x) 
bounds above the number of Newton steps needed to compute the point x*(cTx), starting at x 
(to an accuracy exceeding 2-32): 

#Newton steps i5 + 1 l(log det F(x)-' - log det F(x*(cTx))-') 



www.manaraa.com

SEMIDEFINITE PROGRAMMING 

FIG. 7. Contour lines of the deviationfrom centrality + ( x ) ,  in increments of 0.5. The solid line is the central 
path, on which + ( x )  is zero. 

Thus, +( x ) bounds the effort required to center the point x .  In Fig. 7 the two curves on which 
+ = 0 .5  define a wide region surrounding the central path. For any point in this region, no 
more than eleven Newton steps are required to compute a central point with the same objective 
value. 

4.5. The central path: Duality gap parametrization. In 84.4 we parametrized the 
central path by the primal objective value y .  We found that the dual central path is also 
indirectly parametrized by y as F ( X * ( ~ ) ) - ' / A .It turns out that both central paths can be very 
conveniently parametrized by the duality gap. This will be more convenient when describing 
primal-dual algorithms. 

The primal-dual parametrization of the central path (x* ( q )  , Z* ( q ) )  is defined by 

(53)  ( x * ( q ) ,  Z* ( q ) )  A argmin - log det F  ( x )  - log det Z 
subject to 	 F ( x )  > 0 ,  Z  > 0 ,  

l k f i Z = c i ,  i = 1, . . . , rn, 
c T x +TrFoZ = q 

for q 2 0 .  Thus, among all feasible pairs x ,  Z  with the duality gap q ,  the pair (x* ( q ) ,  Z * ( q ) )  
minimizes the primal-dual barrier function log det F(x) - '  + log det Z - ' .  

It can be shown that the pair ( x * ( q ) ,  Z * ( q ) )  is characterized by 

Comparing this to (33) ,we can interpret the central path as defining a homotopy with the duality 
gap q as homotopy parameter. The homotopy perturbs the optimality condition Z  F ( x )  = 0 
to the condition Z F ( x )  = ( r ] / n )I .  The pair ( x * ( q ) ,  Z * ( q ) )  converges to a primal and dual 
optimal pair as q + 0 .  This interpretation is well known for LPs. 

Now consider a feasible pair ( x ,  Z )  and define q = c T x  + TrFoZ = T r F ( x ) Z .  Then 
( x * ( q ) ,  Z * ( q ) )  is the central pair with the same duality gap as x ,  Z .  Therefore, 

- log det F ( x * ( q ) ) Z * ( q )= -n log (3= n log n - n log T r F ( x ) Z .  
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As in 54.4, we can say that the difference 

$(x, Z) 2 -1ogdet F(x)Z + logdet F(x*(q))Z*(q) 

is a measure of the deviation of (x , Z) from centrality: $(x, Z) is, up to a constant, an upper 
bound on the computational effort required to "center" (x, Z) (meaning, compute the central 
pair with the same duality gap). Of course, $(x, Z) is nonnegative for all primal and dual 
feasible x ,  Z; it is zero only when x and Z are central, i.e., F(x) and Z are inverses of each 
other up to a scale factor. 

It is interesting to note that the deviation from centrality, $(x, Z), can be evaluated for 
any primal feasible x and dual feasible Z without computing the central pair with the same 
duality gap, i.e., (x*(q), Z*(q)), where q = TrF(x)Z. 

The function $ is not convex or quasiconvex (except of course when restricted to Tr F(x) Z 
constant). We also note that $ depends only on the eigenvalues hl , . . . , A ,  of F(x) Z: 

(CY=ihi) In  $(x, 2 )  = n log (n:=,hi) 'In ' 

Thus, $(x, Z) is n times the logarithm of the ratio of the arithmetic to the geometric mean of 
the eigenvalues of F(x)Z. (From this we again see that $ is nonnegative and zero only when 
F(x)Z is a multiple of the identity.) We can also think of $ as a smooth measure of condition 
number of the matrix F(x)Z since 

log^ - 2log2 5 $(x, Z) i (n - 1 ) l o g ~ ,  

where K = Amax/Amin is the condition number of F(x)Z (see also [ l  1, p. 5761). 
We should mention that several other measures of deviation from centrality have been 

used, especially in the linear programming literature, for analyzing and constructing interior- 
point algorithms. One possible choice is 1 1  A - (qln)Ill F ,  where A = diag(A1, . . .,A,). 
An advantage of the measure $ is the simplicity of the (global) analysis of algorithms 
based on it. 

5. Primal-dual potential reduction methods. 

5.1. General description. Potential reduction methods are based on the potential func- 
tion 

(55) d x ,  Z) vf i log (TrF(x)Z) + $(x, Z) 

= (n + v fi) log (TrF(x) Z) - log det F(x) - log det Z - n log n , 

which combines the duality gap of the pair x, Z with the deviation from centrality of the pair 
x, Z. The constant v 2 1 is a parameter that sets the relative weight of the term involving 
duality gap and the term which is the deviation from centrality. 

Since $(x, Z) 2 0for all primal and dual feasible x, Z, we have 

Therefore, if the potential function is small, the duality gap must be small. 
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Potential reduction methods start at a pair of strictly feasible points x(O), z(O) and reduce 
p by at least a fixed amount in every step: 

where S is an absolute constant. As a consequence, the iterates remain feasible and converge 
to the optimum. Moreover, the convergence is polynomial, in a sense that is made precise in 
the following theorem. 

THEOREM5.1. Assume that (56) holds with some S > 0 that does not depend on n or E, 
where 0 < E < 1. Then for 

we have T ~ F ( x ( ~ ) ) z ( ~ )  (x('))z(').< E T ~ F  
Roughly speaking, we have convergence in 0(&) steps, provided the initial pair is 

sufficiently centered. 
A general outline of a potential reduction method is as follows. 

Potential reduction algorithm 
given strictly feasible x and Z. 
repeat 

1. Find a suitable direction Sx and a suitable dual feasible direction SZ. 
2. Find p ,  q 6 R that minimize p(x +pax, Z +qSZ). 
3. Update: x :=x + pax and Z :=Z +qSZ. 

until duality gap 5 E. 

By dual feasible direction, we mean a SZ = 6 ZT that satisfies TrFiS Z =0, i = 1, . . . ,m, 
so that Z +qSZ satisfies the dual equality constraints for any q 6 R. 

We refer to the second step as the plane search since we are minimizing the potential 
function over the plane defined by the (current) points x, Z and the (current) search directions 
Sx, 62.  We will see in 55.5 that the plane search can be carried out very efficiently. 

There are several possibilities for generating suitable descent directions Sx and SZ; each 
choice leads to a different algorithm. The basic computations are all very similar, however. 
The search directions Sx and SZ are obtained from a set of linear equations of the form 

The matrices D = D~ and S = ST 3 0 depend on the particular algorithm and change in 
every iteration. Problem (57) is a set of m +n (n +1)/2 equations in m +n(n + 1)/2 variables. 
If the linear matrix inequality F(x) is block diagonal, with L blocks of size ni, i = 1, . . . , L, 
then we only have m +ELlni(ni + 1)/2 equations and variables. 

Equations (57) arise as the optimality conditions of two quadratic minimization prob- 
lems: 

(58) Sx argmin (2V i F i )  s-'= v E Rm ('l"rDS1 
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1
6Z = argmin TrDV + -TrVSVS

2 

subject to V = VT, 

Problem (57) can be solved in several ways depending on how much structure in the 
matrices Fi one wishes to exploit. We will briefly discuss different possibilities in 57.6. If the 
matrices Fi are dense or unstructured, then (57) can be solved efficiently via a least-squares 
problem: 

m 

6x = argmin S-l12 (D + Vi Fi) s-'12 .1 1 1  
v E Rm F 

This can be shown by eliminating 6Z from the two equations in (57). After a simplification 
we obtain 

for j = 1, .. . ,m. These equations are precisely the normal equations for (60). Once Sx is 
known from (60), the matrix SZ follows from the first equation in (57). 

Let us consider the LP (2) as an example, i.e., assume F(x) = diag(Ax + b). In this 
case, all matrices in (57) are diagonal. If we write D = diag(d) and 6Z = diag(Sz), then 
(57) reduces to 

5.2. Potential reduction method 1. An obvious way to compute search directions Sx 
and SZ is to apply Newton's method to (o. The potential (D is not a convex function, however. 
The first term, (n + v f i )  log(cTx +TrFoZ), is concave in x and Z and hence contributes a 
negative semidefinite term to the Hessian of (o. One simple modification of Newton's method 
is to ignore the second derivative of this concave term. 

Assume the current iterates are x, Z and set F = A F(x) for simplicity. As in New- 
ton's method, we choose directions Sx and SZ that minimize a quadratic approximation of 
( o ( x + v , Z + V ) o v e r a l l v ~ R ~ a n d a l l V = ~ ~ , T r ~ ~ ~ = O , i = 1 ,...,m. 


The primal direction SxP is computed as 


SxP = argmin T r F - l  ($viFi) 


v E Rrn 


= argmin z - F-') ($vi Fi) 
V E Rm 

with p P ( n  + v&)/ (cTx+T ~ F ~ z ) .  
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The quadratic function in (63) is the second-order expansion of log det F(x + v)-' plus 
a linear approximation of the concave term (n + v f i )  log(cT (x + v) +TrFoZ). Thus, SXP 

is the minimizer of a local quadratic approximation to p(x, Z). It is not the exact Newton 
direction, however, because the second derivative of log(cTx + TrFoZ) is ignored. 

Note that (63) is of the form (58) with D = p F Z F  - F and S = F .  Applying (57), we 
see that 6xP can be computed from 

In a similar way, 6zd  is computed as the minimizer of the second-order approximation of 
logdet(Z + v)-' plus a linear approximation of (n + v f i )  log(cTx +TrFo(Z + V)): 

1
6zd  = argmin pTrFoV - TrZ-'V + -T~z-'vz- 'v

2 
subject to 	 V = vT, 

TrFiV=O, i = 1, . . . ,m 

1 
= argmin pTrFV - TrZ-'V + -T~z-'vz- 'v 

2 
subject to 	 V = vT, 

TrFiV=O, i =  1 , . . . ,m .  

The second formulation follows because TrFoV = TrF  V if TrFiV = 0, i = 1, . . . ,m. 
Problem (65) is of the form (59) with S = Z-' and D = p F - Z-'. From (57), we see that 
6zd  can be computed from 

The first potential reduction method follows the general outline given in $5.1, with the 
pair SxP, 6zd  as search directions. Using these directions, it is always possible to reduce p 
by at least a fixed amount. 

THEOREM5.2. Let x ( ~ )  denote the values of x and Z after the kth iteration of and z ( ~ )  
the potential reduction algorithm with search directions 6xP, 6Zd. We have 

From Theorem 5.1 it follows that the algorithm has a polynomial worst-case complexity. 
For a proof of Theorem 5.2 see Vandenberghe and Boyd [log]. The method is a generalization 
of the Gonzaga and Todd method for linear programming [43]. We should mention that 
the theorem holds for an implementable version of the algorithm, in which an appropriate 
approximate plane search is used to determine the step lengths. 

Let us consider the LP (2) as an illustration. The linear systems (64) and (66) reduce to 
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and 

5.3. Potential reduction method 2. The algorithm of $5.2 has the disadvantage of re- 
quiring the solution of two systems, (64) and (66), per iteration. It turns out that a complete 
primal-dual algorithm can be based on the primal system only, by choosing 6ZP as the dual 
search direction. In linear programming this primal-dual method is due to Ye [114]; the 
extension to semidefinite programs is due to Nesterov and Nemirovsky [76] and Alizadeh [I]. 

Again it is possible to reduce (D by at least a fixed amount. 

THEOREM5.3. Let x ( ~ )  denote the values of x and Z after the kth iteration of 
and z ( ~ )  

the potential reduction algorithm with search directions 6xp, 6ZP. We have 

Several comments are in order. First, the value of the guaranteed reduction in potential 
per iteration,-0.05-has no practical significance. Although this bound is more than 25 
times smaller than the bound given in Theorem 5.2, this second potential reduction method 
seems to perform better in practice than the first one does. Second, Theorem 5.3 holds for an 
implementable version of the algorithm, in which an appropriate approximate plane search is 
used to determine the step lengths. A slight variation of Theorem 5.3 is proved by Nesterov 
and Nemirovsky [76, $4.5.31. 

These considerations can be repeated for the dual problem (66). A complete primal-dual 
algorithm can be based on 6xd and 6 z d .  We will call this method potential reduction method 
2*. Polynomial complexity follows from Theorem 5.3 by duality. 

Theorem 5.3*. Let x ( ~ )  denote the values of x and Z after the kth iteration of and z ( ~ )  
the potential reduction algorithm with search directions 6xd,  6Zd.  We have 

5.4. Potential reduction method 3. The first potential reduction method treats the primal 
and dual semidefinite program symmetrically, but requires the solution of two linear systems 
per iteration, one for 6xP and one for 6 z d .  The second method is not symmetrical (we had a 
primal and a dual variant) but computes primal and dual directions from a single linear system, 
which is a great advantage in practice. 

Nesterov and Todd have recently proposed another variation which preserves the primal- 
dual symmetry yet avoids solving two systems per iteration. In their method, primal and dual 
search directions are computed from 

The matrix R satisfies 

and can be constructed as R = F ' / 2 ~ ~ - 1 / 4 ,  = U A uTis the eigenvalue where F ' I2ZF ' I 2  
decomposition of F'I2zF ' I 2 .  If F and Z are a central pair, i.e., if F'I2zF ' I 2  = (qln) I ,  then 
A is a multiple of the identity, A = (qln)I. 

http:$4.5.31
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Nesterov and Todd [77] have shown that the worst-case complexity of this algorithm is 
polynomial. They prove the following theorem. 

THEOREM5.4. Let x ( ~ )  denote the values of x and Z afer the kth iteration of and z ( ~ )  
the potential reduction algorithm with search directions SxSym, GZSYm. We have 

Once again, the theorem holds for an algorithm that uses an appropriate approximate plane 
search. In the case of an LP, with F = diag(Ax +b) and Z = diag(z), this symmetric scaling 
coincides with the primal-dual symmetric scaling used by Kojima, Mizuno, and Yoshise in 
[60], for example, where search directions are computed from 

The three algorithms we discussed so far differ only in the scaling matrices S used in (57). 
In linear programming, the equivalent of method 3 is usually preferred, since it is more efficient 
and has better numerical properties (see, e.g., Wright [113]). 

We should however mention two other possibilities that generalize (67). Alizadeh, Hae- 
berly, and Overton [5] have pointed out the potential numerical difficulties in (64) and (66) 
and have proposed to compute Sx and SZ from 

Helmberg et al. [46] and Kojima, Shindoh, and Hara [61] have proposed to solve 

and to replace the resulting, nonsymmetric matrix 6Z by its symmetric part. 

5.5. Plane search. Once we have selected primal and dual directions Sx and SZ, the 
problem is reduced to a two-dimensional problem, i.e., the selection of lengths of the steps 
made in the directions Sx and 62 .  In this section we show that the computational effort of 
this plane search can be greatly reduced by first diagonalizing the matrices involved. The cost 
of this diagonalization and subsequent plane search is usually small compared to the cost of 
computing the search directions themselves, so in these cases the plane search accounts for a 
small, often negligible, fraction of the total computational effort. 

In the plane defined by the directions Sx and SZ, the potential function can be written as 

(68) - logdet(1 + F-'/~GFF-'/~) - log det(I + q ~ - 1 / 2 S ~ ~ - 1 / 2 ) ,  

where F = A F(x), SF = A Cy=l GxiFi, and 
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Equation (68) can be expressed in terms of the eigenvalues P I , .  . . ,pn of the matrix 
~ - ' / ~ 6  and the eigenvalues vl , . . . , v, z - ' / ~ ~ z z - ' / ~  (i.e., the generalized FF-'I2 of 
eigenvalues of the matrix pairs (a F, F )  and (SZ, 2)):  

(o(x + pax, Z + q & Z )  = (o(x, Z) 

The set of feasible p, q is the rectangle defined by p- p p p pmax, q- 5 q qma,, where 

qmin = max (21 vi > 01, 
qmax= min (21 vi < 01 

Thus, once we have computed the eigenvalues pi, vi and the constants cl, c2, the plane search 
problem becomes 

subject to pmin iP i P-, qmin iq 5 qmax. 

It can be shown (see, e.g., [49]) that the objective, i.e., (o(x + pax, Z + qaZ), is a 
quasiconvex function of p and q; in particular, it has a unique local minimum in the feasible 
rectangle which is the global minimum. Therefore, the problem (69) can be solved by using 
standard methods, e.g., a guarded Newton method. Note that the objective and its derivatives 
with respect to p and q can be computed in 0(n) operations. 

We can also mention that once we have computed the constants cl, c2, pmin, pmaX, qdn, 
and qm,, it is trivial to minimize the duality gap over the feasible plane. The solution of course 
lies at one of the corners of the rectangle. The value of the gap at this corner will be smaller 
than the value corresponding to the solution at the minimizer of the potential function over the 
rectangle, i.e., at the next iterates of the primal-dual algorithm. It is possible to terminate the 
entire algorithm at this point if the gap at the minimum-gap corner is smaller than the required 
tolerance. 

An example of a plane search is illustrated in Fig. 8, which shows the contour lines of 
(o in the p, q plane. Note that its sublevel sets are convex, which is a consequence of the 
quasiconvexity of (o(x + pax, Z +qaZ). 

We should mention one more point about general plane searches. Instead of diagonalizing 
the matrices ~ - ' / ~ 6  we can instead tridiagonalize them. With this FF-'I2 and z - ~ / ~ ~ z z - ~ / ~ ,  
preprocessing, we can still compute the derivatives for the reduced two-dimensional problem 
in O(n) operations. In practice, diagonalization and tridiagonalization do not differ too much 
since the bulk of the effort of computing the eigenvalues is the initial tridiagonalization. In 
a careful complexity analysis, tridiagonalization has the advantage of requiring only a finite 
number of exact arithmetic steps. 
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FIG.8. Example of a plane search. The intersection of thefeasible set with a plane ( x  + pSx, Z + qS Z )  is a 
rectangle. The dashed lines are the contour lines ofthe potentialfinction cp. The plane search replaces the current 
( x ,Z )  by ( x  + p+Sx, Z + q+SZ), where (p+,q+) minimizes the potentialfinction in this plane. The upper right 
corner minimizes the duality gap over all points ( x  +pSx, Z + qSZ).  

qmax ?:=-====-------- - - - - - - - - - - = - :J 

FIG.9. The potentialfinction cp and the duality gap rj versus the iteration number k for two values o f v .  The 
problem is a matrix norm minimization problem with 10 matrices in R ' O ~ ' O .  The dashed line in the left-hand plot 
shows the upper bound given by Theorem 5.3, i.e., a reduction of 0.05 per iteration. 

q = o  

qmin 

5.6. Numerical examples. We consider the matrix norm minimization problem de-
scribed in $2. We take a specific problem involving 10 matrices in R'O' lo, so the semidefinite 
program has dimensions m = 1 1  and n = 20. We use potential reduction method 2. Ex-
perimentation with other problems (not shown here) shows that the results for this particular 
problem and this algorithm are quite typical. 

In Fig. 9 we compare the actual potential function with the upper bound guaranteed by 
the theory for the two-parameter values v = 1 and v = 5. Note that, especially for the larger 
value of v, the actual reduction in potential per iteration is much larger than the lower bound 
of 0.05 given by Theorem 5.2. The nearly regular and linear decrease of the potential function 
is typical. 

The right plot shows the duality gap during the iteration. We see that the duality gap 
decreasesat a very regular, linear rate. The number of iterationsrequired depends on the value 
of v. For v = 1 ,  28 iterations are needed to reduce the duality gap from the initial value of 
1 to 0.0001;for v = 5, the number of iterations is 10. These numbers are typical and, as we 
will see later, very insensitiveto the problem size. 

Another view of the algorithm is given in Fig. 10, which shows the trajectories of the 
duality gap r]  and the deviation from centrality @ on a two-dimensional plot. The left plot 

Pmin p = o  Pmax 
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FIG. 10. Trajectories of the duality gap q and the deviationfrom centrality Q for v = 1 (at left) and v = 5 (at 
right), with two different starting points. Thejrst starting point lies on the central path ((I= 0);  the second point 
lies at (I = 10. The dashed lines are level curves ofthe primal-dual potential function cp. 

shows the trajectories for v = 1 and in the right plot we have v = 5. Each plot shows the 
trajectories for two different starting points: one on the central path (@ = 0) and one at @ = 10 
(the starting point at @ = 10 was also used in Fig. 9). The central path is the horizontal line 
@ = 0. The dashed lines are the level curves of (D = vfilog 7+ @. Since the duality 
gap is plotted on a logarithmic scale, these level curves appear as straight lines, with slope 
determined by v .  

Several features can be seen in the plots. After a few iterations the trajectories that started 
at poorly centered points (i.e., @ (x, Z) = 10) have been centered to the same rough level as the 
trajectories that started from the central path. Thereafter the deviation from centrality remains 
roughly constant, with the constant depending on the value of v, which sets the relative weight 
between the deviation from centrality and duality gap. For example, with v = 5 the iterates 
remain at a deviation of approximately @ x 2.5. Recall that this means that the iterates 
could be centered in no more than about 33 Newton steps. One consequence of @ remaining 
approximately constant is that the reduction in potential at each iteration is completely due to 
duality gap reduction. 

5.7. Dependence on problem size. A natural question is: What is the computational 
effort required to solve a semidefinite program using the methods described above? And, 
more specifically, how does the effort grow with problem size? In terms of iterations required, 
all the methods we have described have the same worst-case complexity: The number of 
iterations required to solve a semidefinite program to a given accuracy grows with problem size 
as 0(n 'I2). In practice the algorithms behave very similarly and much better than predicted 
by the worst-case complexity analyses. It has been observed by many researchers that the 
number of iterations required grows much more slowly than n1I2,perhaps like log n or n'I4, 
and can often be assumed to be almost constant (see Nesterov and Nemirovsky [76, 56.4.41 
or Gonzaga and Todd [43] for comments on the average behavior). For a wide variety of 
problems and a large range of problem sizes, the methods described above typically require 
between 5 and 50 iterations. 

This phenomenon is illustrated in Fig. 11, which shows duality gap versus iterations for 
three instances of the matrix norm minimization problem, using potential reduction method 2, 
with v = 10. The smallest problem involves 10 matrices of size 10 x 10 (i.e., m = 11, 
n = 20); another problem involves 10 matrices of size 70 x 70 (m = 11, n = 140); and the 
last problem involves 100 matrices of size 20 x 20 (m = 101,n = 40). The total size of the 
problem data for the two larger problems is about 50 times larger than it is for the smaller 
problem. Nevertheless, the plots look remarkably similar. In all three cases, we observe the 
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FIG. 1 1 .  Duality gap versus iteration number k for three instances of the matrix norm minimization problem 
with d~rerent  dimensions m and n, using potential reduction method 2. Although the (total) problem sizes vary over 
a 50: 1 range, the convergence is quite similar. The stopping criterion is 0.1% relative accuracy. 

steady, nearly linear convergence of the duality gap that we have observed before. In fact, this 
behavior is typical for general semidefinite programs, not just matrix norm problems. 

The stopping criterion is 0.1 % relative accuracy, i.e., the algorithm was terminated when 
the duality gap became smaller than 0.1 % of the primal objective value. (A stopping criterion 
based on relative accuracy is natural for matrix norm minimization. For other problems, one 
may prefer an absolute, or a combination of an absolute and a relative criterion.) 

With this stopping criterion, the smaller problem required only six iterations and the larger 
problems only eight iterations. We should note that while the number of iterations required 
to solve the three problems varied only from six to eight, the total solution time varied by a 
factor exceeding 500: 1 due to the range in size of the least-squares problems solved in each 
iteration. 

To give a more convincing illustration of the regularity of the convergence and the insen- 
sitivity to problem size, we generated and solved 340 matrix norm problems. The matrices 
Aiwere chosen from a normal distribution and then scaled so that A. = 0.5. As a starting 
point, we take t = 1,x = 0, and Z = (1/2p)I. As in the examples above, we use the method 
of $5.3 with v = 10. The stopping criterion is a relative duality gap of less than 0.1 %. In one 
experiment, we take a fixed number of matrices, 10, and vary the size of Aifrom 10 x 10 to 
70 x 70. In the other experiment, the size of the matrices is fixed at 20 x 20, and we vary the 
number of matrices from 10 to 100. For each combination of sizes we generate and solve 20 
problems. 

Figure 12 shows the average number of iterations required as a function of the dimension, 
along with bars indicating the standard deviation. For the 340 problems solved, the algorithm 
never needed less than six or more than ten iterations. 

Since the number of iterations required is quite insensitive to problem size, the next natural 
question is: What is the work required per iteration? Unfortunately (or perhaps, fortunately), 
there is no simple answer to this question since it largely depends on the amount of structure 
in the matrices Fithat the user will exploit. We will come back to this question in $7.6. 

While the methods described above perform quite similarly in practice, we can still 
make a few comments comparing them. Our experience, mostly with problems arising in 
control theory, suggests that potential reduction method 1 often takes a few more iterations 
than methods 2,2*, and 3, and also requires the solution of two sets of equations'per iteration. 
Methods 2,2*, and 3 appear to be quite comparable and have some practical advantage over 
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m = 11, n varies n = 40, m varies 
10 1 I 

lo7 

FIG.  12. The average number of iterations required to solve the matrix norm minimization problem with k 
matrices in R p x p ,  which yields a semidejinite program of dimension m = k + 1 ,  n = 2p .  In the left plot k = 10 
(m = 11) isjixed and we vary p (n). In the right plot p = 20 (n = 40) isjixed and we vary k (m). Each point is the 
average of 20 random instances. The error bars show the standard deviation. 

method 1. (Moreover, the distinction between methods 2 and 2' is merely convention, since 
we could just as well refer to the dual problem as the primal and vice versa.) 

Finally, we note that since the algorithms all reduce the same potential function, we can 
arbitrarily switch among them. For example, we can use method 2 for the even iterations and 
method 2* for the odd iterations. Although the possibility of switching is interesting, we do 
not know whether it yields any practical advantage. 

6. Phase I and combined phase I-phase I1 methods. We have assumed so far that 
initial strictly feasible primal and dual points are known. That is often the case, as in the 
minimum matrix norm problem of §2. This section describes what to do when an initial 
primal strictly feasible or dual strictly feasible point is not known. 

6.1. Big-M method. The "big-M" method is standard in nonlinear programming; see, 
e.g., Bazaraa, Sherali, and Shetty [12] or Anstreicher [lo]. We distinguish three cases. 

Case 1. A strictly feasible x is known, but no strictly feasible Z. 
Case 2. A strictly feasible Z is known, but no strictly feasible x. 
Case 3 .  Neither a strictly feasible x nor a strictly feasible Z is known. 
Case 1. Assume that a strictly feasible x(O) is given, but no strictly feasible dual point. 

In this case one can modify the primal problem by introducing an upper bound on the trace of 
F(x): 

minimize cTx 

subject to F(x) >_ 0, 
TrF(x) 5 M. 

If M is big enough, this entails no loss of generality: the solutions of (70) and the original 
semidefinite program (1) are the same (assuming p* > -m). The initial point x(O) will still 
be strictly feasible if T r ~ ( x ( ~ ) )  < M. 


The dual of the modified problem (70) is 


maximize -TrFo(Z - 21) -Mz 

(71) subject to TrFi(Z - zI)  = cir i = 1 , .  . . ,m,  

zz-o,z>o, 
where z is a scalar variable that did not appear in the dual (27) of the original semidefinite 
program. It is easy to compute strictly feasible points for problem (71). First compute any 
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solution U = UT to the underdetermined set of equations 

Take z(O) > -min(k~,(U),  0) and then set z(O) = U + z(O)I. One can verify that z('), z(O) 

are strictly feasible for (71). Any of the primal-dual methods described above can now be 
used, starting at the initial points x(O) and z('), z(O). 

The difficulty with this scheme is the choice of M. Sometimes it is possible to (analyti- 
cally) determine an appropriate value for M from the problem data. In other cases we need 
to check that the extra constraint TrF(x) 5 M is not active at the solution of the modified 
problem (70), i.e., we have TrF(x) < M. If this is the case then we have actually solved 
the original semidefinite program (1); if not, we can increase M and again solve the modified 
problem (70). 

Note that M serves as an upper bound on F(x) (e.g., it implies 1 1  F(x) 11 5 M), which in 
turn bounds the (primal) feasible set. As a very rough rule of thumb, simple bounds on the 
primal variables often lead to the easy identification of strictly feasible dual points. 

Case 2. This is dual to the previous case. Assume we have a dual strictly feasible point 
z(O), but no primal strictly feasible point. One can then add "big-M" terms to the primal 
problem: 

minimize cTx + Mt 
subject to F(x) + t I  2 0, 

t 2 0. 

To obtain a strictly feasible solution to (72), choose any x(O) and take 

The dual of problem (72) is 

maximize 	 -TrFoZ 
subjectto 	 TrFiZ=ci ,  i = 1, . . . ,m ,  

T r Z + z  = M, 

z 2 o , z 2 0 ,  

or, if we eliminate the slack variable z ,  

maximize -Tr FoZ 
subjectto T r F i Z = c i ,  i = 1, . . . ,m ,  

TrZ 5 M. 

From this we see that we have modified the dual semidefinite program (27) by adding an upper 
bound on the trace of Z. 

Case 3. When no primal or dual strictly feasible points are known, one can combine the 
two cases above and introduce two coefficients, MI and M2. The primal problem becomes 

minimize 	 cTx + Mlt 
subject to 	 F(x) + t I 2 0, 

TrF(x) 5 M2, 
t 2 0, 
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and the dual becomes 

maximize 	 -TrFo(Z - zI)  -M2z, 
subjectto 	 T r E ( Z - z I )  = c i ,  i = 1, . . . ,m, 

f i Z  IM I ,  
Z 1 0 , z  1 0 .  

6.2. Other methods. Several methods are known that can start at infeasible points and 
do not require big- M terms. Examples are the Nesterov and Nemirovsky projective method [76] 
and the primal-dual methods described by Helmberg et al. [46], Alizadeh, Haeberly, and Over- 
ton [5], Kojima, Shindoh, and Hara [6 11, and Nesterov [70]. 

7. Some extensions. We mention a few interesting extensions of and variations on the 
semidefinite programming problem. 

7.1. Generalized linear-fractional programming. In 52 we saw that the problem of 
minimizing the maximum eigenvalue of a symmetric matrix A  ( x )  can be cast as a semidefinite 
program: 

minimize 	 t 

subject to 	 t I - A ( x )  10. 

Now suppose we have a pair of matrices ( A ( x ) ,  B ( x ) ) ,  both affinely dependent on x .  To 
minimize their maximum generalized eigenvalue, we can solve the optimization problem 

minimize t 

subject to t B ( x )  - A ( x )  10, 
B ( x )  10. 

This is called a generalized linear-fractional problem. It includes the linear-fractional problem 

c T x +d
minimize 	 ---

e T x + f 
subject to Ax +b 10, e T x + f > 0 

as a special case. 
Problem (73) is not a semidefinite program, however, because of the bilinear term t B ( x ) .  

It is a quasiconvex problem and can still be efficiently solved. See Boyd and El Ghaoui [16], 
Haeberly and Overton [45], and Nesterov and Nemirovsky [75,68] for details. 

7.2. Determinant maximization. In 54.3 we discussed the problem of minimizing the 
bamer function - log det F( x ) or, equivalently, of maximizing the determinant of F( x ) over 
all x such that F ( x )  > 0. This problem often arises in combination with additional linear 
matrix inequality constraints: 

minimize log det F (x) - '  
subject to F ( x )  > 0, 

C ( x ) 10, 

where C ( x )  = A Co + x l C l  + . . . + xmCm.This problem is a convex programming problem 
and can be solved very efficiently. In fact, Nesterov and Nemirovsky [76, 56.4.31 have showed 
that (74) can be cast as a semidefinite program, although it is more efficient to solve it directly. 
An important application is the computation of the maximum volume ellipsoid contained in 
a polytope; see Nesterov and Nemirovsky [76, 56.51 or Khachiyan and Todd [56] for interior- 
point methods to solve this problem. 



www.manaraa.com

89 SEMIDEFINITE PROGRAMMING 

7.3. Rank minimization. If the semidefinite program (1) is solvable, its solution lies 
on the boundary of the feasible set, i.e., at a point where F(x) is singular. This observation 
motivates the second extension: minimizing the rank of a positive semidefinite symmetric 
matrix: 

minimize rank B(x) 
subject to A(x) >_ 0, B(x) 2 0, 

where A and B are symmetric matrices that depend affinely on x. Many problems in control 
theory, statistics, and other fields can be reduced to this problem. 

In contrast with semidefinite programs, generalized fractional problems, and determinant 
maximization problems, however, this problem is hard. One knows that general rank con- 
straints can greatly increase the complexity of the problem; we saw in §2 that the difference 
between the NP-hard indefinite quadratic problem (14) and the semidefinite relaxation (16) is 
exactly the constraint that a matrix have rank one. 

As another example, we can formulate Boolean linear programming as a rank minimiza- 
tion problem. Consider the problem of determining whether there is an x E Rm such that 
Cx +d 2 0 and xi E (0, I), which is NP-hard. It can be formulated as the rank minimization 
problem with 

A(x) = diag(Cx +d), B(x) = diag(x1, . . . ,x,, 1 - X I ,  . . . , 1 - x,). 

Here the rank of B is always at least rn and is rn only when xi E (0, 1). 
Some special problems involving rank contraints can be solved efficiently; see [104]. 

7.4. General conic formulation. Semidefinite programming can be considered as an 
extension of linear programming inwhich the positive orthant is replaced by the cone of positive 
definite matrices. Semidefinite programming, in turn, can be further generalized to the case of 
a general, pointed cone. This general conic formulation is discussed by Wolkowicz [I121 and 
Nesterov and Nemirovsky [76]. The methods described here can be extended to the general 
conic formulation; see Chapters 4-6 of [76]. 

7.5. More efficient barriers. One can also replace the barrier function by several others 
that result in better worst-case complexity estimates. Nesterov and Nemirovsky [76, $5.51 
have generalized Vaidya's volumetric and combined volumetric barriers to the cone of positive 
semidefinite matrices. We do not know of any experimental results that indicate whether these 
improved barrier functions are better in practice than the standard barrier log det F(x)-'. 

7.6. Exploiting problem structure. It is possible to modify the semidefinite program 
methods described above to exploit problem structure. The dominant part in every itera- 
tion is the solution of a linear system of the form (57) or a least-squares problem of the 
form (60). Problem (60) has rn variables and n(n + 1)/2 equations and can be solved in 
0(rn2n2) operations using direct methods. Important savings are possible when the matrices 
Fi are structured. The easiest type of structure to exploit is block-diagonal structure. Assume 
F(x) consists of L diagonal blocks of size ni, i = 1, . . . ,L. Then the number of equations 
in (60) is c:=, ni (ni + 1)/2, which is often an order less than n(n + 1)/2. For instance, in 
the LP case (diagonal matrix F(x)) the number of variables is n, and solving the least-squares 
problem requires only 0(rn2n) operations. 

Usually much more can be gained by exploiting the internal structure (e.g., sparse, 
Toeplitz, etc.) of the diagonal blocks in Fi. In this section we give an overview of sev- 
eral techniques that have been used for exploiting structure in LPs and point out the parallels 
and differences with semidefinite programming. 
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As in linear programming, we can distinguish between direct and iterative methods. 
Direct sparse-matrix techniques Several strategies have been proposed to solve sys- 

tems (62) when the matrix A is large and sparse. 
The most popular and fastest approach consists of reducing the system to 

Since S is diagonal, the product in (75) is usually still sparse. This depends on the sparsity 
pattern of A, however. Dense rows in A, for example, have a catastrophic effect on sparsity. 
Equation (75) can be solved using a sparse Cholesky decomposition [66]. 

The second strategy is to solve the sparse system (62) directly. Several researchers have 
argued that this method has better numerical properties (see Fourer and Mehrotra [32], Gill et 
al. [38], and Vanderbei and Carpenter [109]). Moreover, directly solving (62) avoids the loss 
of sparsity caused by squaring A. 

Unfortunately, neither of these techniques works for semidefinite programs because they 
lead to systems with large dense blocks, even if the matrices F, are sparse. 

A third possibility that avoids this difficulty introduces new variables W E RnXnand 
writes (57) as 

This is a sparse, symmetric indefinite system that can be solved using sparse-matrix techniques. 
Iterative techniques A second group of methods solves the equations (61), (57), or (76) 

iteratively. 
For (61) or (60) the conjugate gradients method or the LSQR algorithm of Paige and 

Saunders [83] appears to be very well suited. In exact arithmetic, these algorithms solve (60) 
in m + 1 iterations, where each iteration requires an evaluation of the two (adjoint) linear 
mappings 

m 

(77) (vl, .. .,v,) H. and W HCV~F; (TrFIW,. . . ,TrFmW) 
i=l 

for some vector v and matrix W = wT.When the matrices Fi are unstructured, these two 
operations take mn2 operations. Hence, the cost of solving (60) using LSQR is 0(n2m2), and 
nothing is gained over direct methods. 

In most cases, however, the two operations (77) are much cheaper than mn2 because of the 
special structure of the matrices Fi. The equations are often dense, but still highly structured in 
the sense that the two linear functions (77) are easy to evaluate. References [18, 1081 discuss 
iterative methods for exploiting structure in semidefinite programs arising in engineering. 

One can also consider solving the symmetric systems (57) or (76) iteratively by using 
the SYMMLQ method of Paige and Saunders [82] or the symmetric quasi-minimal residual 
(QMR) method of Freund and Nachtigal[35]. Working on (57) or (76) has the advantage of 
allowing more freedom in the selection of preconditioners [38]. 

In practice, i.e., with round-off error, the convergence of these methods can be slow and 
the number of iterations can be much higher than m + 1. There are techniques to improve the 
practical performance, but the implementation is very problem specific and falls outside the 
scope of this paper. 
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8. Conclusions. Semidefiniteprogramming canbe consideredan extensionof linearpro-
grammingthat includesa wide variety of interestingnonlinear convex optimizationproblems. 
We have described several primal-dual interior-pointmethods for semidefiniteprograms that 
generalize interior-point methods devised for LPs. 

While the details of the primal-dual algorithms are different, they have similar structures 
and worst-case complexity analyses and behave similarly in practice. 

Common structure. Each iteration involves the solution of one (or two) least-squares 
problems to determine suitable primal and dual search directions. Suitable step 
lengths are determined by solving a (smooth, quasiconvex) two-dimensional opti-
mization problem that involves only the duality gap and the deviationfrom centrality. 
The computationaleffort of this plane search is greatly reduced by first diagonalizing 
(or tridiagonalizing)the matrices involved. 
Worst-case complexity. One can prove that each of the algorithmsreduces a potential 
function by at least some fixed amount at each iteration. Hence, the number of 
iterations required to solve a semidefiniteprogram to a given accuracy can grow no 
faster than the square root of the problem size. 
Practical performance. In practice, the algorithms perform much better than the 
worst-case bound. The decrease in potential function at each iteration is usually 
much more than the guaranteed minimum. The convergence of the duality gap is 
quite regular and nearly linear. The required number of iterations appears to grow 
much more slowly with problem size than the square root bound given by the theory. 
For practical purposes, the required number of iterations can be considered almost 
independentof problem size, ranging between 5 and 50. 

In summary, primal-dualalgorithmsfor semidefiniteprogramsshare many of the features 
and characteristicsof the correspondingalgorithms for LPs. Our final conclusion is therefore 
that it is not much harder to solvea rather wide classof nonlinearconvexoptimizationproblems 
than it is to solve LPs. 
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